Associate Professor, Cancer Biology - GIDP | Associate Professor, BIO5 Institute | Associate Professor, Chemistry and Biochemistry-Sci | Member of the Graduate Faculty | Associate Professor
My group’s research focuses on the signal transduction pathways and molecular mechanisms controlling directed cell migration, or chemotaxis, in eukaryotic cells. Chemotaxis is central to many biological processes, including the embryonic development, wound healing, the migration of white blood cells leukocytes) to sites of inflammation or bacterial infection, as well as the metastasis of cancer cells. Cells can sense chemical gradients that are as shallow as a 2% difference in concentration across the cell, and migrate towards the source of the signal, the chemoattractant. This is achieved through an intricate network of intracellular signaling pathways that are triggered by the chemoattractant signal. These pathways ultimately translate the detected chemoattractant gradient into changes in the cytoskeleton that lead to cell polarization and forward movement. In addition, many cells such as leukocytes and Dictyostelium, transmit the chemoattractant signal to other cells by themselves secreting chemoattractants, which increases the number of cells reaching the chemoattractant source. To investigate the mechanisms of signal transduction underlying directed cell migration, we are using Dictyostelium discoideum, a model genetic system, as well as human cancer cell models. Cell motility and chemotaxis of Dictyostelium cells is very similar to that of leukocytes and cancer cells, using the same underlying cellular processes as these higher eukaryotic cells. We use Dictyostelium to identify proteins and mechanisms involved in chemotaxis and normal as well as malignant human cells to verify if our findings are conserved and implicated in cancer cell migration. We combine molecular genetic, proteomics and phosphoproteomics to identify new signaling proteins and pathways involved in the control of chemotaxis. We couple this approach with live cell imaging to understand the spatiotemporal dynamics of the signaling events, and with biochemical and biophysical analyses including Bioluminescence Resonance Energy Transfer; BRET) to understand how proteins interact and function within the signaling networks. Of note, in 2011 and in 2013, my career was disrupted due to the birth of two children, which affected my productivity at the early stages of my independent career. However, I have since successfully competed for major external funding and published several original research articles, demonstrating that my productivity and career is on an upward trajectory.